MATH 2050 - Subsequences \& Bolzano-Weierstrass The
(Reference: Bartle § 3.4)
Defy : Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a seq. of real numbers.
Suppose $n_{1}<n_{2}<n_{3}<\ldots$ be a strictly increasing seq. of natural no..
THEN.

$$
\left(x_{n_{k}}\right)_{k \in \mathbb{N}}:=\left(x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots, x_{1}, \ldots\right)
$$

is called a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$.
Intuitively:

$$
\begin{aligned}
& \left(x_{n}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4} x_{5}, x_{6} \ldots\right) \\
& \left.\vdots \quad x_{n}\right)=\left(\begin{array}{lll}
\left(x_{1}, x_{2},\right. & \left.x_{4}, x_{6}, \ldots \ldots\right) \\
k=1 & k=2 \\
n_{1}=1 & n_{2}=2 & n_{3}=4 \quad n_{4}=6
\end{array}\right.
\end{aligned}
$$

E.g.) (Tail of aseq) For each fixed $\ell c(\mathbb{N}$, then the $l-\operatorname{tail}\left(x_{k+l}\right)_{k \in T i N}$ is a subsequace of $\left(x_{n}\right)_{n \in \operatorname{NiN}}$
(Here. $n_{k}=k+\ell$)
Egg.) $\left(x_{n}\right)=\left((-1)^{n}\right)$
Then $(1,1,1, \ldots, 1, \ldots)$ is a subset.

Thu: Suppose $\lim _{n \rightarrow \infty} x_{n}=x$. Then. every subseq. $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ also converges to the same limit. ie. $\lim _{k \rightarrow \infty} x_{n_{k}}=x$.

Proof: Note: $n_{k} \geqslant k$ for all $k \in \mathbb{N}$ (by induction).
Let $\varepsilon>0$ be fixed but arbitrary

$$
\lim _{n \rightarrow \infty} x_{n}=x \Rightarrow \exists K \in \mathbb{N} \text { st }\left|x_{n}-x\right|<\varepsilon \quad \forall n \geqslant K
$$

By Note above, when $k \geqslant k$, then $n_{k} \geqslant k \geqslant K$. Thus.

$$
\left|x_{n_{k}}-x\right|<\varepsilon \quad \forall k \geqslant k
$$

Example : Show that $\lim _{n \rightarrow \infty} C^{\frac{1}{n}}=1$ for $c>1$.
Pf: Let $z_{n}:=C^{\frac{1}{n}}$. Then, by induction.
$\left(z_{n}\right)$ is decreasing and bold below by 1
By MCT, $\lim _{n \rightarrow \infty}\left(z_{n}\right)=: z$ exists.
Consider the subseq. $\left(z_{n_{k}}\right)_{k \in \mathbb{N}}=\left(z_{2 k}\right)$, by Thu above.

$$
\lim _{k \rightarrow \infty}\left(z_{n_{k}}\right)=z
$$

$$
\because z_{n}>1 \quad \forall n \in N
$$

Now. $z_{2 n}=C^{\frac{1}{2 n}}=\left(C^{\frac{1}{n}}\right)^{\frac{1}{2}}=\left(z_{n}\right)^{\frac{1}{2}}$ rejected
Take $n \rightarrow \infty$ on both sides, we have $z=\sqrt{z} \Rightarrow z=\varnothing$ or 1 . \qquad。

In summary.
MCT: $\left(x_{n}\right)$ monotone + bd $\Rightarrow\left(x_{n}\right)$ convergent.
Thu: $\left(x_{n}\right)$ convergent $\underset{\underset{x}{x}}{\Rightarrow}\left(x_{n}\right)$ bod
Thun: $\left(x_{n}\right)$ convergent \Rightarrow ANY subseg. $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ $\stackrel{F}{\circ}$ converge to the SAME limit.

Take negation yields two divergence criteria:
Cor: $\left(x_{n}\right)$ unbid $\Rightarrow\left(x_{n}\right)$ divergent
Cor: Either: \exists subseq $\left(x_{n_{k}}\right)$ which is divergent or: \exists two subseq $\left(x_{n_{k}}\right)$ and $\left(x_{n_{k}}\right)$ st

$$
\lim _{k \rightarrow \infty}\left(x_{n_{k}}\right) \neq \lim _{k \rightarrow \infty}\left(x_{n_{k}}\right)
$$

$\Rightarrow \quad\left(x_{n}\right)$ divergent.
Example: $\left((-1)^{n}\right)$ is divergent since 3 two subseq.

$$
\begin{aligned}
& (1,1,1,1, \ldots, 1) \rightarrow 1 \\
& (-1,-1,-1,-1, \ldots,-1) \rightarrow-1
\end{aligned}
$$

Example: $\left(\cos \frac{n \pi}{2}\right)=(0,-1,0,1,0,-1,0,1, \ldots)$ \exists subseq. $(0,0, \ldots .0) \rightarrow 0$.
$(-1,1,-1,1, \ldots)$ divergent \Rightarrow original seq is divergent.

Example: $\quad\left(x_{n}\right)=(0,1,0,2,0,3,0, \ldots, 0, n, \ldots)$ divergent since \exists subseq. $(1,2,3,4, \ldots, n, \ldots)$ unbid \Rightarrow divergent.

Recall: $\left(x_{n}\right)$ divergent $\Leftrightarrow\left(x_{n}\right)$ DOES NOT Converge to x for $A N Y \quad x \in \mathbb{R}$.

Thu: Fix $x \in \mathbb{R}$. Then
$\left(x_{n}\right)$ does NOT converge to x or $\left(x_{n}\right) \rightarrow x^{\prime} \neq x$
$\Leftrightarrow \exists \varepsilon_{0}>0$ AND a subseq. $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ sot.

$$
\left|x_{n_{k}}-x\right| \geqslant \varepsilon_{0} \quad \forall k \in \mathbb{N} .
$$

Proof: Recall:

$$
\lim _{n \rightarrow \infty}\left(x_{n}\right)=x \quad \Leftrightarrow \begin{array}{r}
\forall \varepsilon>0, \exists K=K(\varepsilon) \in \mathbb{N} \text { st. } \\
\left|x_{n}-x\right| \leqslant \varepsilon \quad \forall n \geqslant K
\end{array}
$$

Negate the above.
$\left(x_{n}\right)$ does NoT $\Leftrightarrow \exists \varepsilon_{0}>0$ s.t. $\forall K \in \mathbb{N}$ s.t. converge to $x \quad \exists n_{k} \geqslant k$ sit $\left|x_{n_{k}}-x\right| \geqslant \varepsilon_{0}$

- Take $K=1$, choose $n_{1} \geqslant 1$ sit $\left|x_{n_{1}}-x\right| \geqslant \varepsilon_{0}$
- Take $k=n_{1}+1$, choose $n_{2} \geqslant n_{1}+1$ st $\left|x_{n_{2}}-x\right| \geqslant \varepsilon_{0}$ repeat $\sim\left(x_{n_{k}}\right)_{k \in N}$ st $\left|x_{n_{k}}-x\right| \geqslant \varepsilon_{0}$

Recall: "MCT": $\left(x_{n}\right)$ bod $\&$ monotone $\Rightarrow\left(x_{n}\right)$ convergent [E.g.) $\left(x_{n}\right)=\left((-1)^{n}\right)$ bod, but NOT monotone. NOT convergent.]

Q: What if $\left(x_{n}\right)$ is ONLY bod?

Bolzano-Weierstrass The: "BWT"
$\left(x_{n}\right)$ bod $\Rightarrow \exists$ subseq. $\left(x_{n_{k}}\right)$ which is convergent.
But not unique!
Example: $\quad\left(x_{n}\right)=\left((-1)^{n}\right)$ has a convergent subseq.
namely $\left(x_{2 k}\right)=(1,1,1,1, \ldots) \rightarrow 1$
another choice $\left(x_{2 k-1}\right)=(-1,-1,-1,-1, \ldots) \xrightarrow[\rightarrow-1]{\neq-1}$
Proof: We will prove it using "Nested Interval Property" (NIP)
[Recall: $I_{1} \geq I_{2} \geq I_{3} \geq \ldots$ nested, closed \& bod d

$$
\left.\Rightarrow \quad \bigcap_{n=1}^{\infty} I_{n} \neq \phi \quad \begin{array}{c}
\text { If furthermore } \\
\text { then } \\
\bigcap_{n=1}^{\infty} I_{n}=\{\xi\} .
\end{array}\right]
$$

Goal: Constmit In inductively satisfying the hypothesis above.
Given a bad seq $\left(x_{n}\right)$, by def z. $\exists M>0$ sit. $\left|x_{n}\right| \leqslant M \quad \forall n \in \mathbb{N}$ i.e $\forall n \in \mathbb{N}, \quad x_{n} \in[-M, M]=: I_{1}=\left[a_{0}, b_{1}\right]$

Do "method of bisection":
Consider the midpoint $\frac{a_{1}+b_{1}}{2}$, then
Case 1: $\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$ contains infinitely many terms of $\left(x_{n}\right)$
\leadsto choose $I_{2}:=\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]=\left[a_{2}, b_{2}\right]$.
Case 2: Otherwise \rightarrow choose $I_{2}:=\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]=\left[a_{2}, b_{2}\right]$

Repeat the precess. Take a midpt. $\frac{a_{2}+b_{2}}{2}$, choose $I_{3}=\left[a_{3}, b_{3}\right]$.
Inductively, we obtain a seq of internals:
$I_{1} \supseteq I_{2} \geq I_{3} \geq I_{4} \geq \ldots \ldots$ nested. closed \& bad
St. - each In contains infinitely many terms of $\left(x_{n}\right)$

- Length $\left(I_{n}\right)=\frac{2 M}{2^{n-1}} \rightarrow 0$ as $n \rightarrow \infty$

By "NIP". $\bigcap_{n=1}^{\infty} I_{n}=\{\xi\}$
Claim: \exists subseq. $\left(X_{n_{k}}\right) \rightarrow \xi$
Pf: Take any $x_{n}, \in I_{1}$, then since I_{2} contains infinitely many temp of $\left(x_{n}\right)$
\leadsto we can choose $n_{2}>n_{1}$ st $x_{n_{2}} \in I_{2}$
m keep on dorty this, we obtain $n_{1}<n_{2}<n_{3}<\cdots$ it

$$
x_{n_{k}} \in I_{k}=\left[a_{k}, b_{k}\right] \quad \forall k \in \mathbb{N} .
$$

ie. $\quad a_{k} \leq x_{n_{k}} \leq b_{k} . \quad \forall k \in \mathbb{N}$.
Now. $\bigcap_{n=1}^{\infty} I_{n}=\{\xi\} \Rightarrow \lim a_{k}=\lim b_{k}=\xi$.
By Square Thu, we have $\lim _{k \rightarrow \infty}\left(x_{n_{k}}\right)=\xi$.

As an application of BWT, we prove:
Prop: Let $\left(x_{n}\right)$ be a bod sequence.
$\left(x_{n}\right) \rightarrow x \Leftrightarrow$ ANY convergent subseq. $\left(x_{n_{k}}\right)$ has $\lim _{k \rightarrow \infty}\left(x_{n_{k}}\right)=x$
Proof: " \Rightarrow " DONE.
"«" Suppose NOT, ie $\left(x_{n}\right)$ does NOT converge to x.
By earlier thu. $\exists \varepsilon_{0}>0$ \& a subseq $\left(x_{n_{k}}\right)$ st.

$$
\begin{equation*}
\left|x_{n_{k}}-x\right| \geqslant \varepsilon_{0} \quad \forall k \in \mathbb{N} \tag{*}
\end{equation*}
$$

By B WT., $\left(x_{n_{k}}\right)_{k}$ bod $\Rightarrow \exists$ convergent subseg. $\left(x_{n_{k_{k}}}\right)_{l}$ of $\left(x_{n_{k}}\right)_{k}$ ($\because\left(x_{n}\right)$ bad) which is also a subset of $\left(x_{n}\right)_{n}$
By hypothesis. $\lim _{l \rightarrow \infty}\left(x_{n_{k_{l}}}\right)=x$ contradicting (k).

